Incompressible fluid inside an astrophysical black hole?
نویسندگان
چکیده
منابع مشابه
Incompressible fluid inside an astrophysical black hole ?
It is argued that under natural hypothesis the Fermions inside a black hole formed after the collapse of a neutron star could form a non compressible fluid (well before reaching the Planck scale) leading to some features of integer Quantum Hall Effect. The relations with black hole entropy are analyzed. Insights coming from Quantum Hall Effect are used to analyze the coupling with Einstein equa...
متن کاملA ug 2 00 7 Incompressible fluid inside an astrophysical black hole ?
It is argued that under natural hypothesis the Fermions inside a black hole formed after the collapse of a neutron star could form a non compressible fluid (well before reaching the Planck scale) leading to some features of integer Quantum Hall Effect. The relations with black hole entropy are analyzed. Insights coming from Quantum Hall Effect are used to analyze the coupling with Einstein equa...
متن کاملMotion of an Elastic Solid inside an Incompressible Viscous Fluid
The motion of an elastic solid inside an incompressible viscous fluid is ubiquitous in nature. Mathematically, such motion is described by a PDE system that couples the parabolic and hyperbolic phases, the latter inducing a loss of regularity which has left the basic question of existence open until now. In this paper, we prove the existence and uniqueness of such motions (locally in time), whe...
متن کاملAstrophysical Evidence for Black Hole Event Horizons
Astronomers have discovered many potential black holes in X-ray binaries and galactic nuclei. These black holes are usually identified by the fact that they are too massive to be neutron stars. Until recently, however, there was no convincing evidence that the objects identified as black hole candidates actually have event horizons. This has changed with extensive applications of a class of acc...
متن کاملShock-wave cosmology inside a black hole.
We construct a class of global exact solutions of the Einstein equations that extend the Oppeheimer-Snyder model to the case of nonzero pressure, inside the black hole, by incorporating a shock wave at the leading edge of the expansion of the galaxies, arbitrarily far beyond the Hubble length in the Friedmann-Robertson-Walker (FRW) spacetime. Here the expanding FRW universe emerges be-hind a su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2007
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.76.084012